Superconformal Operator Product Expansion and General Gauge Mediation

Jean-François Fortin

Department of Physics, University of California, San Diego La Jolla, CA

> August 28-September 02, 2011 Supersymmetry 2011

> > based on

arXiv:1107.1721 [hep-th] (JFF, K. Intriligator, A. Stergiou), work in progress (JFF, K. Intriligator, A. Stergiou)

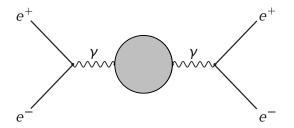
Outline

- Motivation
 - (S)CFTs and real world
 - Applications
- SOPE in SCFTs
 - Operator product expansion: Review
 - Superconformal operator product expansion
 - Current-current SOPE
 - Superconformal blocks
- SOPE and GGM
 - General gauge mediation: Overview
 - Cross sections
 - Visible sector SUSY breaking masses
- Conclusion
 - Features and applications

(S)CFTs, (S)OPE and real world

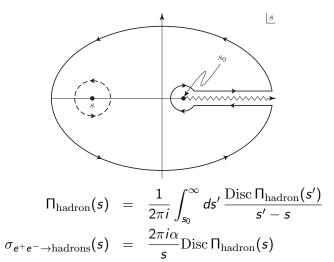
- Why (S)CFTs ⇒ (S)CFTs are generic
 - $\mathcal{N} = 4$ SYM
 - $\mathcal{N}=1$ SQCD in conformal window Seiberg (1994)
 - Non-Lagrangian candidates *e.g.* Benini, Tachikawa, Wecht (2009)
- Why (S)OPE \Rightarrow (S)CFT observables
 - Spectrum of operators and dimensions
 - (S)OPE coefficients
 - Non-local Wilson loops
- ⇒ Highly constrained

(S)CFT model-building applications


- Large anomalous dimensions ⇒ Suppress or enhance otherwise finely-tuned quantities
 - Conformal sequestering Luty, Sundrum (2001)
 - Conformal technicolor Luty, Okui (2004)
 - μ/B_{μ} problem of gauge mediation Roy, Schmaltz (2007)
 - Flavor hierarchy Poland, Simmons-Duffin (2009)
- RG flows near (S)CFTs
 - Walking technicolor Holdom (1985)
 - Unparticle physics Georgi (2007)

(S)OPE UV/IR applications

- Non-CFTs ⇒ Conformally covariant OPEs
- Softly broken symmetries as spontaneously broken symmetries
 - Symmetry breaking seen as IR effect (via field or spurion vev)
 - Symmetry restored in UV theory
 - ⇒ (S)OPE selection rules
- ⇒ Strongly-coupled IR physics described by weakly-coupled UV physics through (S)OPE
 - Example: QCD
 - Not conformal (non-trivial RG flow)
 - IR physics \Rightarrow Theory with chiral symmetry breaking $(\langle \bar{Q}Q \rangle \neq 0)$ and confinement $(\langle G_{\mu\nu}^A G^{A\mu\nu} \rangle \neq 0)$
 - UV physics ⇒ Asymptotically free CFT
 - ⇒ QCD sum rules Shifman, Vainshtein, Zakharov (1979)



Probe hadron sector from lepton sector through gauge interactions (UV/IR physics separated using OPE)

$$\Pi_{\mathrm{hadron},\mu\nu}(p) = ie^2 \int d^4x \, e^{-ip \cdot x} \langle j_{\mu}(x) j_{\nu}(0) \rangle$$

$$\mathcal{O}_i(x) \mathcal{O}_j(0) = \sum_k c_{ij}^k(x) \mathcal{O}_k(0)$$

Operator product expansion: Review

Operator product expansion

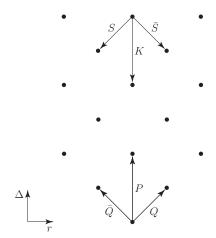
$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) = \sum_{k} \frac{c_{ij}^{k}}{x^{\Delta_{i} + \Delta_{j} - \Delta_{k}}} \mathcal{O}_{k}(0)$$

$$= \sum_{\text{primary } k} \frac{c_{ij}^{k}}{x^{\Delta_{i} + \Delta_{j} - \Delta_{k}}} F_{\Delta_{i}\Delta_{j}}^{\Delta_{k}}(x, P) \mathcal{O}_{k}(0)$$

- Short distance physics expressed in terms of local operators
- Wilson coefficients ⇒ UV physics
- Vacuum expectation values ⇒ IR physics
- OPE constrained by conformal symmetry ⇒ Wilson coefficients of descendants determined by Wilson coefficients of primaries Ferrara, Gatto, Grillo (1971)

CFT correlation functions

2-point and 3-point correlation functions


$$\langle \mathcal{O}_{i}(x_{1})\mathcal{O}_{j}(x_{2})\rangle = \frac{g_{ij}}{x_{12}^{\Delta_{i}+\Delta_{j}}}$$

$$\langle \mathcal{O}_{i}(x_{1})\mathcal{O}_{j}(x_{2})\mathcal{O}_{k}(x_{3})\rangle = \frac{c_{ijk}}{x_{12}^{\Delta_{i}+\Delta_{j}-\Delta_{k}}x_{31}^{\Delta_{k}+\Delta_{i}-\Delta_{j}}x_{23}^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}$$

- 2-point function coefficients $g_{ij} = c_{ij}^0$ (Zamolodchikov metric)
- ullet 3-point function coefficients $c_{ijk}=c_{ij}^\ell g_{\ell k}$

Superconformal operator product expansion

Superconformal modules

$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) \stackrel{?}{=} \sum_{\text{superprimary } k} \frac{c_{ij}^{k}}{x^{\Delta_{i} + \Delta_{j} - \Delta_{k}}} F_{ij}^{k}(x, P, Q, \bar{Q}) \mathcal{O}_{k}(0)$$

$$\mathcal{T}_{\mu}(z) = j_{\mu}^{R}(x) + \theta^{\alpha} S_{\alpha\mu}(x) + \bar{\theta}^{\dot{\alpha}} \bar{S}_{\dot{\alpha}\mu}(x) + 2\theta \sigma^{\nu} \bar{\theta} T_{\nu\mu}(x) + \cdots$$

$$\mathcal{J}(z) = J(x) + i\theta j(x) - i\bar{\theta} \bar{j}(x) - \theta \sigma^{\mu} \bar{\theta} j_{\mu}(x) + \cdots$$

- OPE constrained by superconformal symmetry
- Sum over superprimaries instead of primaries
- ⇒ Wilson coefficients of superdescendants NOT fully determined by Wilson coefficients of superprimaries (existence of superconformal 3-point invariants)! Osborn (1998)

Current-current SOPE

Superconformal 3-point correlation functions for supercurrents

$$\langle \mathcal{J}(z_1)\mathcal{J}(z_2)\mathcal{O}^{\mu_1\dots\mu_\ell}(z_3)\rangle = \frac{1}{x_{\bar{1}3}^2 x_{\bar{3}1}^2 x_{\bar{2}3}^2 x_{\bar{3}2}^2} t_{\mathcal{J}\mathcal{J}\mathcal{O}_\ell}^{\mu_1\dots\mu_\ell}(X_3,\Theta_3,\bar{\Theta}_3)$$

- ullet $\mathcal{O}^{\mu_1...\mu_\ell}$ real spin- ℓ superfield with vanishing R-charge
- $t_{\mathcal{JJO}}(X,\Theta,\bar{\Theta})$ fully determined by superconformal symmetry and supercurrent conservation JFF, Intriligator, Stergiou (2011)

$$\begin{array}{lcl} t^{\mu_{1}\dots\mu_{\ell}}_{\mathcal{J}\mathcal{J}\mathcal{O}_{\ell=\mathrm{even}}}(X,\Theta,\bar{\Theta}) & = & c_{\mathcal{J}\mathcal{J}\mathcal{O}_{\ell}}\frac{X_{+}^{(\mu_{1}}\cdots X_{+}^{\mu_{\ell}})}{(X\cdot\bar{X})^{2-\frac{1}{2}}(\Delta-\ell)} \\ & \times \left[1-\frac{1}{4}(\Delta-\ell-4)(\Delta+\ell-6)\frac{\Theta^{2}\bar{\Theta}^{2}}{X\cdot\bar{X}}\right] \\ t^{\mu_{1}\dots\mu_{\ell}}_{\mathcal{J}\mathcal{J}\mathcal{O}_{\ell=\mathrm{odd}}}(X,\Theta,\bar{\Theta}) & = & c_{\mathcal{J}\mathcal{J}\mathcal{O}_{\ell}}\frac{X_{+}^{(\mu_{1}}\cdots X_{+}^{\mu_{\ell-1}}}{(X\cdot\bar{X})^{2-\frac{1}{2}}(\Delta-\ell)} \\ & \times \left[X_{-}^{\mu_{\ell}}\right] - \frac{\ell(\Delta-\ell-4)}{\Delta-2}\frac{(X_{-}\cdot X_{+})X_{+}^{\mu_{\ell}}}{X\cdot\bar{X}} \end{array}$$

⇒ Relations in current-current SOPE from superconformal symmetry and supercurrent conservation Motivation

From superprimaries to superdescendants (applications to GGM)

$$j_{\alpha}(x)\bar{j}_{\dot{\alpha}}(0) = \frac{1}{x^{4}} \left[(S ix \cdot \sigma)_{\dot{\alpha}} (ix \cdot \sigma \bar{S})_{\alpha} - x^{2} \bar{Q}_{\dot{\alpha}} (ix \cdot \sigma \bar{S})_{\alpha} \right.$$

$$+ 2\Delta_{J}x^{2} (ix \cdot \sigma)_{\alpha\dot{\alpha}} \right] (J(x)J(0))$$

$$j_{\mu}(x)j_{\nu}(0) = \frac{1}{16x^{8}} \left[(x^{2}\eta_{\mu\rho} - 2x_{\mu}x_{\rho})(S\sigma^{\rho}\bar{S} - \bar{S}\sigma^{\rho}S) \right.$$

$$\times x^{4} (\bar{Q}\bar{\sigma}_{\nu}Q - Q\sigma_{\nu}\bar{Q}) + \cdots \right] (J(x)J(0))$$

$$j_{\alpha}(x)j_{\beta}(0) = \frac{1}{x^{2}} Q_{\beta}(ix \cdot \sigma \bar{S})_{\alpha} (J(x)J(0))$$

$$j_{\mu}(x)J(0) = \frac{x^{2}\eta_{\mu\nu} - 2x_{\mu}x_{\nu}}{4x^{4}} \left[S\sigma^{\nu}\bar{S} - \bar{S}\bar{\sigma}^{\nu}S \right] (J(x)J(0))$$

$$S^{\alpha}S^{\beta}(J(x)J(0)) = 0$$

$$\left[x^{2}Q_{\alpha}Q_{\beta} + Q_{\alpha}(ix \cdot \sigma \bar{S})_{\beta} - Q_{\beta}(ix \cdot \sigma \bar{S})_{\alpha} \right] (J(x)J(0)) = 0$$

Superconformal blocks

Decomposition into primaries Poland, Simmons-Duffin (2010)

$$\mathcal{O}^{\mu_1\dots\mu_\ell}(x,\theta,\bar{\theta}) = A^{\mu_1\dots\mu_\ell}(x) + \theta\sigma_\mu\bar{\theta}B^{\mu\mu_1\dots\mu_\ell}(x) + (\theta\sigma_\mu\bar{\theta})^2D^{\mu_1\dots\mu_\ell}(x) + \cdots$$

- A and D irreducible spin- ℓ representations
- $B \sim M + N + L$ where M spin- $(\ell + 1)$ representation and N spin- $(\ell 1)$ representation
- \Rightarrow A_{primary} , M_{primary} , N_{primary} , L_{primary} and D_{primary}

Superconformal 3-point function and SOPE coefficients

$$egin{array}{lll} c_{JJM_{
m primary}}^{\ell+1;\ell={
m even}} &=& c_{JJN_{
m primary}}^{\ell-1;\ell={
m even}} = c_{JJL_{
m primary}} = 0 \ & c_{JJD_{
m primary}}^{\ell;\ell={
m even}} &=& -rac{\Delta(\Delta+\ell)(\Delta-\ell-2)}{8(\Delta-1)} c_{JJA_{
m primary}}^{\ell;\ell={
m even}} \ & c_{JJA_{
m primary}}^{\ell;\ell={
m odd}} &=& c_{JJL_{
m primary}} = c_{JJD_{
m primary}}^{\ell;\ell={
m odd}} = 0 \ & c_{JJN_{
m primary}}^{\ell-1;\ell={
m odd}} &=& -rac{(\ell+2)(\Delta-\ell-2)}{\ell(\Delta+\ell)} c_{JJM_{
m primary}}^{\ell+1;\ell={
m odd}} \end{array}$$

- Consistent with Lorentz symmetry
- Consistent with unitary bound $\Rightarrow D_{\text{primary}}$ and N_{primary} are null states for $\Delta = \ell + 2$ (short representation)

4-point superconformal blocks

Motivation

$$egin{aligned} \langle J(x_1) J(x_2) J(x_3) J(x_4)
angle &= rac{1}{x_{12}^4 x_{34}^4} \sum_{\mathcal{O}_{\Delta,\ell} \in J imes J} rac{(c_{JJA_\ell})^2}{c_{A_\ell A_\ell}} \mathcal{G}_{\Delta,\ell}^{JJ;JJ}(u,v) \ & \mathcal{G}_{\Delta,\ell=\mathrm{even}}^{JJ;JJ} &= g_{\Delta,\ell} + rac{(\Delta + \ell)(\Delta - \ell - 2)}{16(\Delta + \ell + 1)(\Delta - \ell - 1)} g_{\Delta + 2,\ell} \ & \mathcal{G}_{\Delta,\ell=\mathrm{odd}}^{JJ;JJ} &= rac{(\ell + 1)^2(\Delta + \ell)}{4(\Delta + \ell + 1)} g_{\Delta + 1,\ell + 1} \ & + rac{(\ell + 2)^2(\Delta - \ell - 2)}{\Delta - \ell - 1} g_{\Delta + 1,\ell - 1} \end{aligned}$$

- $g_{\Delta,\ell}(u,v)$ universal 4-point conformal blocks (accounting for descendants) with u,v usual conformal cross-ratios
- $\mathcal{G}^{JJ;JJ}_{\Delta,\ell}(u,v)$ non-universal 4-point superconformal blocks (accounting for superdescendants)

General gauge mediation: Overview

- SUSY breaking hidden sector connected to visible sector through gauge interactions Buican, Meade, Seiberg, Shih (2008)
 - Decoupled hidden sector in $g \rightarrow 0$ limit
 - Universal visible sector SUSY breaking effects introduced via loops
- ⇒ Current-current correlation functions (even without hidden sector Lagrangian)

$$\mathcal{J}(z) = J(x) + i\theta j(x) - i\overline{\theta}\overline{j}(x) - \theta\sigma^{\mu}\overline{\theta}j_{\mu}(x) + \cdots$$
$$\langle J(x)J(0)\rangle, \ \langle j_{\alpha}(x)\overline{j}_{\dot{\alpha}}(0)\rangle, \ \langle j_{\mu}(x)j_{\nu}(0)\rangle, \ \langle j_{\alpha}(x)j_{\beta}(0)\rangle$$

Operator product expansion

Strongly-coupled hidden sector and OPE

$$J(x)J(0) = \sum_{k} c_{JJ}^{k}(x)\mathcal{O}_{k}(0)$$
$$i \int d^{4}x e^{-ip \cdot x} J(x)J(0) = \sum_{k} \tilde{c}_{JJ}^{k}(p)\mathcal{O}_{k}(0)$$

- Relations between Wilson coefficients in same OPE and different OPEs
 - $\langle J(x)J(0)\rangle$ overdetermined \checkmark
 - $\langle j_{\alpha}(x)\overline{j}_{\dot{\alpha}}(0)\rangle$, $\langle j_{\mu}(x)j_{\nu}(0)\rangle$ and $\langle j_{\alpha}(x)j_{\beta}(0)\rangle$ determined in terms of $\langle J(x)J(0)\rangle$ \checkmark
- \Rightarrow Knowledge of strongly-coupled quantities in terms of J(x)J(0) OPE

Cross sections

OPE constraints, analyticity and optical theorem

$$\begin{array}{lcl} \sigma_{\mathrm{visible} \to D^* \to \mathrm{hidden}}(s) & = & -\frac{(4\pi\alpha)^2}{s} \sum_k \mathrm{Im}[\tilde{c}_{JJ}^k(s)] \langle \mathcal{O}_k(0) \rangle \\ \\ \sigma_{\mathrm{visible} \to \lambda_\alpha^* \to \mathrm{hidden}}(s) & = & f_{1/2}(\mathrm{Im}[\tilde{c}_{JJ}^k(s)]) \\ \\ \sigma_{\mathrm{visible} \to A_\mu^* \to \mathrm{hidden}}(s) & = & f_1(\mathrm{Im}[\tilde{c}_{JJ}^k(s)]) \end{array}$$

- Good approximation with first few terms
- Consistent with direct computation in ordinary gauge mediation

Visible sector SUSY breaking masses

OPE constraints and analyticity

$$\begin{array}{ll} M_{\rm gaugino} & \approx & \displaystyle \sum_k \frac{\alpha \, {\rm Im}[s^{d_k/2} \, \tilde{c}_{JJ}^k(s)]}{2^{d_k-1} d_k M^{d_k}} \langle Q^2(\mathcal{O}_k(0)) \rangle \\ \\ m_{\rm sfermion}^2 & \approx & 4\pi \alpha Y \langle J(x) \rangle \\ & - \displaystyle \sum_k \frac{\alpha^2 c_2 \, {\rm Im}[s^{d_k/2} \, \tilde{c}_{JJ}^k(s)]}{2^{d_k+1} \pi \, d_k^2 M^{d_k}} \langle \bar{Q}^2 Q^2(\mathcal{O}_k(0)) \rangle \end{array}$$

• Reproduce the usual f(x) and g(x) functions of ordinary gauge mediation Martin (1996)

OPE constraints and analyticity

$$J^{A}(x)J^{B}(0) = \tau \frac{\delta^{AB} \mathbb{1}}{16\pi^{4}x^{4}} + \frac{kd^{ABC}}{\tau} \frac{J^{C}(0)}{16\pi^{2}x^{2}} + w \frac{\delta^{AB}K(0)}{4\pi^{2}x^{2} - \gamma_{K}} + c_{i}^{AB} \frac{\mathcal{O}_{i}(0)}{x^{4 - \Delta_{i}}} + \cdots$$

$$M_{
m gaugino} \approx -\frac{\alpha\pi w\gamma_{Ki}}{8M^2} \langle Q^2(\mathcal{O}_i(0)) \rangle$$

 $m_{
m sfermion}^2 \approx 4\pi\alpha Y \langle J(x) \rangle + \frac{\alpha^2 c_2 w\gamma_{Ki}}{64M^2} \langle \bar{Q}^2 Q^2(\mathcal{O}_i(0)) \rangle$

- Good approximation with first few terms
- $f(x), g(x) \sim 1/2 + \cdots$ instead of $f(x), g(x) \sim 1 + \mathcal{O}(x)$ in ordinary gauge mediation

Features and applications

Features

- Undetermined superconformal 3-point correlation functions
- Fully determined superconformal current-current SOPE
- Relations between current-current OPEs
- Well-defined current 4-point superconformal blocks

Applications to GGM

- All current-current OPEs determined by J(x)J(0) OPE
- Relations between Wilson coefficients
- Cross sections and SUSY breaking masses from J(x)J(0)
- Incalculable strongly-coupled models made tractable

